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We characterize the orthogonal polynomials in a class of polynomials defined
through their generating functions. This led to three new systems of orthogonal
polynomials whose generating functions and orthogonality relations involve elliptic
functions. The Hamburger moment problems associated with these polynomials are
indeterminate. We give infinite families of weight functions in each case. The
different polynomials treated in this work are also polynomials in a parameter
and as functions of this parameter they are orthogonal with respect to unique
measures, which we find explicitly. Through a quadratic transformation we find a
new exactly solvable birth and death process with quartic birth and death rates.
© 2001 Academic Press

1. INTRODUCTION

In [12] we studied orthogonal polynomials generated by

G0(x; a) :=1, G1(x; a)=a−x/2, (1.1)



and

−xGn(x; a)=2(n+1)(2n+1) Gn+1(x; a)+2n(2n+1) Gn−1(x; a)

−2a(2n+1)2 Gn(x; a), n > 0, (1.2)

where a is a fixed real parameter. This was already a generalization of
earlier results of Berg and Valent [4, 6]. The continued J-fraction asso-
ciated with the recurrence relation (1.2) was studied by Rogers and is stated
as (94.21) in Wall’s book [20]. In [12] it was shown that the Gn’s have the
generating function

C
.

n=0
Gn(x; a) tn=(1−2at+t2)−1/2 cos(`x g(t)), (1.3)

where

g(t)=1
2 F
t

0
u−1/2(1−2au+u2)−1/2 du. (1.4)

It was also pointed out in [12] that {Gn(x; a)} have an additional generat-
ing function

C
.

n=0
Gn(x; a)

tn

2n+1
=

sin(`x g(t))

`xt
. (1.5)

In this paper we characterize orthogonal polynomials {pn(x)} whose
generating functions have the form

C
.

n=0
Cn(x; a, b) tn=(1−At)a (1−Bt)b cos(`x g(t)), (1.6)

or

C
.

n=0
Sn(x; a, b) tn=(1−At)a (1−Bt)b

sin(`x g(t))

`xt
. (1.7)

It turns out that the only choices for a and b are a=0, −1/2 and
b=0, −1/2; hence there are essentially four possible sets of orthogonal
polynomials because some are related as per (1.3) and (1.5). In Section 2 we
identify the three term recurrence relations satisfied by the orthogonal
polynomials generated by (1.6) or (1.7). In addition to the Gn’s we found
three other systems of orthogonal polynomials corresponding to the
choices a, b=0 or −1/2. In Section 3 we study the spectral properties of
the orthogonal polynomials Sn(x;−1/2, −1/2). In particular we show that
the corresponding Hamburger moment problem is determinate if and only
if a > 1 or a < −1.
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In Section 4 we study the indeterminate case a ¥ (−1, 1). We find two of
the four entire functions of the corresponding Nevanlinna matrix. This
allows us to describe the support of certain measures of orthogonality. In
two cases the orthogonality measures are explicitly given.
In Section 5 we study the determinacy of the polynomials Cn(x;−1/2, 0)

and Sn(x;−1/2, 0) for a > 1. These polynomials are essentially birth and
death process polynomials with rates (see (2.24) and (2.31))

ln=A/B(2n+1)2, mn=(2n)2

and

l̃n=4A/B(n+1)2, m̃n=(2n+1)2, respectively.

The birth and death process with transition rates

ln=k2(2n+1)2, mn=(2n)2, 0 < k2 < 1, (1.8)

have been studied by Stieltjes [16], and he gave the Stieltjes transform and
the orthogonality measure. The generating functions for these polynomials
were given by L. Carlitz [5] and G. Valent [18]. G. Valent [18] showed
the determinacy of the Hamburger moment problem for the polynomials
with rates in (1.8) or with rates

ln=k2(2n+2)2, mn=(2n+1)2, 0 < k2 < 1. (1.9)

We show in Section 5 that the Hamburger moment problem of polynomials
corresponding to (1.8) or (1.9), for k2 > 1, is determinate.
When this work was at a preliminary stage, Ismail and Masson [11]

gave alternate derivations of the representation of the associated continued
fractions considered in [12] and here as the Laplace transform of Jacobian
elliptic functions. This builds on the continued fractions of Stieltjes and
Rogers. Our approach uses generating functions. It was shown that the
generating functions of the polynomials under consideration satisfy Lamé
type differential equations. David and Gregory Chudnovsky [7] seem to
have been aware of the existence of such a connection but did not explore
the spectral properties of the orthogonal polynomials. Connections among
continued fractions which are Laplace transforms of Jacobi elliptic func-
tions and exact sums of squares have been thoroughly explored in Milne’s
very interesting recent paper [14]. Lomont and Brillhart [22] studied a
class of related polynomials.

2. A CHARACTERIZATION THEOREM

Set

y=y(x, t) :=cos(`x g(t)). (2.1)
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The substitution

w=g(t) (2.2)

transforms

“
2y
“w2

+xy=0 (2.3)

to

“
2y
“t2

−
gœ
gŒ
“y
“t
+x(gŒ)2 y=0. (2.4)

Now we use the substitution

y(x, t)=(1−tA)−a (1−tB)−b G(x, t) (2.5)

in (2.4) to see that the generating function G=G(x, t) satisfies the
differential equation

t(1−At)(1−Bt)
“
2G
“t2

+c1
“G
“t

+c2G+x(gŒ)2 t(1−At)(1−Bt) G=0,

(2.6)

where

c1=t(1−At)(1−Bt) 5 2aA
1−At

+
2bB
1−Bt

−
gœ
gŒ
6 , (2.7)

c2=t(1−At)(1−Bt)

×5a(a+1) A2

(1−At)2
+
b(b+1) B2

(1−Bt)2
+

2abAB
(1−At)(1−Bt)

6

−
tgœ
gŒ

[aA(1−Bt)+bB(1−At)]. (2.8)

It is clear from (2.6) that (gŒ)2 t(1−At)(1−Bt) must be a constant; hence
we may assume

1−2at+t2=(1−At)(1−Bt) (2.9)

and A ] B. Following [12] we set A and B to be one of e if and e−if with
AB=1, where

e if=a+`a2−1 , e−if=a−`a2−1 . (2.10)
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This determines the branch of `a2−1 as the branch that makes `a2−1/
aQ 1 as aQ.. Applying (1.4) and (2.8) we see that the coefficient of
1/(1−At) in (2.6) is

[a(a+1) A(1−B/A)− 12 aA(1−B/A)] G, (2.11)

which must vanish. This leads to a=0 or a=−1/2. Similarly requiring the
coefficient of 1/(1−Bt) in (2.6) to vanish leads to b=0 or b=−1/2. Thus
we proved the following result.

Theorem 2.2.1. In order for the Cn’s generated by (1.6) to be orthogonal
polynomials it is necessary that (2.9) holds and a=b=0, a=b=−1/2;
a=0 and b=−1/2; or a=−1/2 and b=0.

Clearly the case a=b=−1/2 gives the polynomials {Gn(x; a)} of
(1.1)–(1.3).

2.1. The Case a=b=0

In this case (2.7) and (2.8) give

c1=[1−4at+3t2]/2, c2=0, (2.12)

so that (2.6) reduces to

t(1−At)(1−Bt)
“
2G
“t2

+
1
2
[1−4at+3t2]

“G
“t

+
1
4
xG=0. (2.13)

Equating coefficients of various powers of t leads to the recurrence relation

−xCn(x; 0, 0)=2(n+1)(2n+1) Cn+1(x; 0, 0)−8an2 Cn(x; 0, 0)

+2(n−1)(2n−1) Cn−1(x; 0, 0), n \ 0, (2.14)

with C−1(x; 0, 0)=0 and C0(x; 0, 0)=1. This leads to an interesting set of
polynomials. They are not orthogonal since the positivity condition [2] is
violated. On the other hand the polynomials {vn(x)}

vn(x) :=−
2(n+1)

x
Cn+1(x; 0, 0), n \ 0, (2.15)

form an orthogonal polynomial system. The vn’s satisfy

v0(x) :=1, v−1(x) :=0, (2.16)
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and

−xvn(x)=2(n+1)(2n+3) vn+1(x)−8a(n+1)2 vn(x)

+2(n+1)(2n+1) vn−1(x), n > 0. (2.17)

Furthermore, since C0(x; 0, 0)=1 we find

C
.

n=0
vn(x) tn=

sin(`x g(t))

`xt(1−2at+t2)
. (2.18)

Observe that

vn(x)=Sn(x;−1/2, −1/2), (2.19)

and

vn(x)=k−nkn(−kx) for a=
k2+1
2k

,

where {kn(x)} are the polynomials satisfying (5.3) in [5]. The continued
J-fraction associated with the recursion (2.17) was studied by Rogers in
1907, who represented it as a Laplace transform of a combination of ellip-
tic functions. This is stated in (94.20) in Wall [20]. When a=1 the vn’s are
essentially birth and death process polynomials with rates

ln=2(n+2)(2n+3), mn=2n(2n+1). (2.20)

For a survey of birth and death processes and orthogonal polynomials
see [9].

2.2. The Case a=−1/2 and b=0

By symmetry this is the only case left. We now have

c1=
1
2+

5
2 ABt

2−(2A+B) t, (2.21)

c2=−A(1−2Bt)/4. (2.22)

The coefficients in the t power series expansion of the solution of (2.6) in
this case satisfy

−xCn(x;−1/2, 0)=2(n+1)(2n+1) Cn+1(x;−1/2, 0)

+2n(2n−1) ABCn−1(x;−1/2, 0)

−[4Bn2+4An(n+1)+A] Cn(x;−1/2, 0). (2.23)
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These polynomials, through a renormalization, are birth and death process
polynomials with rates [9]

ln=(2n+1)2 A, mn=4n2B; (2.24)

in this case, a > 1 so that A and B in (2.10) are real. The birth and death
processes with transition rates

ln=k2(2n+1)2 mn=(2n)2, 0 < k2 < 1,

have been studied by Stieltjes [16], who gave the Stieltjes transform and
the orthogonality measure.
It is clear from (2.23) that through a renormalization we may take

AB=1.
We now summarize our findings since Theorem 2.1.

Theorem 2.2.2. The orthogonal polynomials {vn(x)}, and {Cn(x;−1/2,
0)} with a > 1 have the generating functions (2.18) and

C
.

n=0
Cn(x;−1/2, 0) tn=(1−At)−1/2 cos(`x g(t)),

|t| [ a−`a2−1 .
(2.25)

They satisfy the recursion relations (2.17) and (2.23), respectively, with A
and B as in (2.9).

The polynomials satisfying the recurrence relation (2.23) have been
studied by many authors ([5, 16, 18, 19]). The generating functions and the
orthogonality measure associated with these polynomials also have been
found by L. Carlitz [5] and G. Valent [18, 19].
We now study orthogonal polynomials that have generating functions

(1.7). Here we start again with (2.4). Then let

y(x, t)=t1/2(1−At)−a (1−Bt)−b G(x, t). (2.26)

A direct substitution in (2.4) leads to

t(1−At)(1−Bt)
“
2G
“t2

+[(1−At)(1−Bt)+c1]
“G
“t

+G 5c2+
x
4
−
(1−At)(1−Bt)

4t
+

c1
2t
6=0, (2.27)

where c1 and c2 are as in (2.7) and (2.8). Therefore the choices for a and b
must be a=0, −1/2 and b=0, −1/2. It is clear that the case a=
b=−1/2 gives rise to {vn(x)}; hence it does not lead to anything new.
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Furthermore, the case a=b=0 is already covered by (1.5), so the only
case left is the case a=−1/2 and b=0, since b=−1/2 and a=0 follows
from a=−1/2 and b=0 by interchanging A and B.

2.3. The Case a=−1/2 and b=0

Let the corresponding polynomials be un(x). Thus for a > 1

G=G(x, t)=C
.

n=0
un(x) tn=(1−At)−1/2

sin(`x g(t))

`xt
,

|t| < a−`a2−1 .

(2.28)

The restriction a > 1 guarantees that the polynomials un’s are real. In this
case (2.27) becomes

t(1−At)(1−Bt)
“
2G
“t2

+53
2
+
7
2
ABt2−t(3A+2B)6 “G

“t

×5x
4
−A−

B
4
+
3
2
ABt6 G=0. (2.29)

Thus we derive the following recursion relation from (2.29)

−xun(x)=2(n+1)(2n+3) un+1(x)+2n(2n+1) ABun−1(x)

−[4n2(A+B)+4n(2A+B)+4A+B] un(x). (2.30)

It is clear that the monic forms of (2.23) and (2.30) are different hence the
polynomials are different. The polynomials in (2.30) also come from a birth
and death process with rates

ln=4(n+1)2A, mn=(2n+1)2 B. (2.31)

This corresponding process is the dual one (in the sense of Karlin and
MacGregor) with rates l̃n=mn+1, m̃n=ln in (2.24) with the interchange of
A and B, and there is a simple relation [13, Lemma 3, p. 504]. In the case
when k2=B/A, |B| < |A|, G. Valent [18] studied their Stieltjes functions,
orthogonality measure and generating functions.

3. THE POLYNOMIALS {vn(x)}

The numerator polynomials {vg
n (x)} satisfy the recurrence relation (2.17)

and the initial conditions

vg
0 (x)=0, vg

1 (x)=−1/6 (3.1)

258 ISMAIL, VALENT, AND YOON



since

v0(x)=1, v1(x)=(8a−x)/6. (3.2)

The recurrence relation (2.17) and the initial conditions (3.1) imply that the
generating function

V*(x, t) :=C
.

n=0
vg
n (x) t

n (3.3)

satisfies the differential equation

4t(1−2at+t2)
“
2V*(x, t)
“t2

+6(1−4at+3t2)
“V*(x, t)
“t

+(x−8a+12t) V*(x, t)=−1. (3.4)

We can reduce the order of the differential Eq. (3.4) through the substitution

V*(x, t)=
sin(`x g(t))

`xt(1−2at+t2)
H(x, t) (3.5)

since the factor multiplying H in (3.5) satisfies the homogeneous equation
corresponding to (3.4). From (3.4) and (3.5) we see that V*(x, t) satisfies
the partial differential equation

52 cos(`x g(t))−
gœ(t)
gŒ2(t)

sin(`x g(t))

`x
6 “H
“t

+
sin(`x g(t))

`x gŒ(t)

“
2H
“t2

=−1/2, (3.6)

with g(t) as defined in (1.4). A first integral of (3.6) is

sin2(`x g(t))

`x gŒ(t)

“H
“t

=−
1
2
F
t

0
sin(`x g(u)) du,

and after a second integration we get

H(x, t)=
1
2
F
t

0

sin(`x (g(u)−g(t)))

sin(`x g(t))
du. (3.7)

This and (3.5) establish the desired generating function

V*(x, t)=
1

`t(1−2at+t2)
F
t

0

sin(`x (g(u)−g(t)))

2`x
du. (3.8)
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Using the definition (1.4) and integration by parts, we get

V*(0, t)=−
1

4`t(1−2at+t2)
F
t

0

`u

`1−2au+u2
du. (3.9)

Before studying the spectral properties of vn(x)(=vn(x, a)), we note that

vn(−x, −a)=(−1)n vn(x, a), (3.10)

so we shall restrict ourselves to the case a \ 0.

Theorem 3.3.1. If a ¥ (1,.) then the vn’s are orthogonal with respect to
a unique measure m(x) which is discrete and its Stieltjes transform is given by

F
.

−.

dm(t)
x−t

=
1
2
F
e −f

0

sin(`x (g(u)−g(e−f)))

sin(`x g(e−f))
du, (3.11)

where

a=cosh f, f > 0. (3.12)

Furthermore the continued J-fraction

−1/6
a0x+b0−

c1
a1x+b1−

· · · , (3.13)

with

an :=
−1

2(n+1)(2n+3)
, bn :=

4a(n+1)
(2n+3)

, cn :=
2n+1
2n+3

, (3.14)

converges uniformly to the right-hand side of (3.11) on compact subsets of the
complex plane not containing the zeros of sin(`x g(e−f)).

Proof. The t-singularity of the generating function (2.18) with smallest
absolute value is t=e−f. It is also clear from (3.5) and (3.8) that the
t-singularity of V* of smallest absolute value is also t=e−f. Using
Darboux’s method [17] we conclude that

lim
nQ.

vg
n (x)
vn(x)

=H(x, e−f).

Since vn(x) and vg
n (x) are the numerators and denominators of the con-

tinued fraction in (3.13) it then follows that the continued fraction (3.13)
converges to H(x, e−f), which is the right-hand side of (3.11). The rest of
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the theorem will follow from the theory of the Hamburger moment
problem, [1, 15], if we prove that the Hamburger moment problem is
determinate. This requires computing the large n asymptotics of vn(x) since
the determinacy is equivalent to showing that the orthonormal polynomials
vn(x)/`n+1 are not in l2 for some complex x, [1, 15]. Darboux’s
method applied to (2.18) gives

vn(x)=
sin(`x g(e−f))

`np`2x sinh f
e (n+1) f [1+o(1)].

If `x ] np/g(e−f) then vn(x)/`n+1 ¨ l2 and the uniqueness of the
measure follows. Since the right-hand side of (3.11) is a meromorphic
function then m(x) is discrete and the theorem follows. L

The point masses at the poles of the right-hand side of (3.11) are given by

xn :=
n2p2

g2(e−f)
, n=1, 2, ... . (3.15)

Furthermore the mass at xn is the residue of the right-hand side of (3.11) at
x=xn. Thus

m(xn)=
np

g2(e−f)
F
e −f

0
sin(npg(u)/g(e−f)) du. (3.16)

For the first elliptic integral K(k), it is easily obtained that

g(e−f)=`k K(k2), k :=a−`a2−1=e−f < 1. (3.17)

In this form the mass m(xn) is

m(xn)=
np
kK2

F
k

0
sin 5 np

`k K
g(u)6 du. (3.18)

We introduce the new variable

v :=
g(u)

`k
=

1

`k
F
u

0

dt

2`t(1−2at+t2)

=F
(u/k)1/2

0

dy

`(1−k2y2)(1−y2)
. (3.19)
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The Jacobi inversion theorem [21] gives

u=k sn2(v, k2), du=2k sn v cn v dn v dv.

Therefore the mass is

m(xn)=
2np
K2

F
K

0
sin 1npv

K
2 sn v cn v dn v dv. (3.20)

From [21, Sect. 22.6] and the differentiation of sn v, we have the Fourier
series

sn v=
2p
kK

C
.

n=0

qn+1/2

1−q2n+1
sin 1 (2n+1)

pv
2K
2 , (3.21)

cn v dn v=
p2

kK2
C
.

n=0

(2n+1) qn+1/2

1−q2n+1
cos 1 (n+1/2)

pv
K
2 , (3.22)

where (see (4.4))

q=exp(−pKŒ/K), for KŒ=F
1

0
(1−t2)−1/2 (1−(1−k2) t2)−1/2 dt.

Thus (3.20), (3.21) and (3.22) imply

m(xn)=
n2p4qn

k2K4
5 C
n−1

a=0

1
(1−q2a+1)(1−q2n−2a−1)

−2 C
.

a=0

q2a+1

(1−q2a+2n+1)(1−q2a+1)
6 , n=1, 2, ... . (3.23)

On the right-hand side of the Eq. (3.23)

C
.

a=0

q2a+1

(1−q2a+2n+1)(1−q2a+1)

= lim
NQ.

C
N

a=0

q2a+1

(1−q2a+2n+1)(1−q2a+1)

= lim
NQ.

1
1−q2n

C
N

a=0

5 1
1−q2a+1

−
1

1−q2a+2n+1
6

= lim
NQ.

1
1−q2n
5 C
n−1

a=0

1
1−q2a+1

− C
N

a=N−n+1

1
1−q2a+2n+1
6

=
1

1−q2n
C
n−1

a=0

1
1−q2a+1

−
n

1−q2n
.
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On the other hand,

C
n−1

a=0

1
(1−q2a+1)(1−q2n−2a−1)

−
2

1−q2n
C
n−1

a=0

1
(1−q2a+1)

=
1

1−q2n
5 C
n−1

a=0

1−q2n

(1−q2a+1)(1−q2n−2a−1)

− C
n−1

a=0

1
1−q2a+1

− C
n−1

a=0

1
1−q2n−2a−1
6

=
1

1−q2n
C
n−1

a=0

−1+q2a+1+q2n−2a−1−q2n

(1−q2a+1)(1−q2n−2a−1)

=
−n

1−q2n
.

Consequently, we have the mass

m(xn)=
p4

k2K4
n3qn

1−q2n
, (3.24)

and we correct a result in [5, p. 450]. Since [21, p. 520]

sn2 v=
K−E
Kk2

−
2p2

K2k2
C
.

n=1

nqn

1−q2n
cos 1np

K
v2 , (3.25)

by differentiating (3.25) with respect to v and then dividing by v ] 0 and
letting vQ 0, we find that the total mass is indeed equal to 1.
Thus we have established the following theorem.

Theorem 3.3.2. The orthogonality relation of the vn’s is

p4

k2K4
C
.

j=1

j3q j

1−q2j
vm(xj; a) vn(xj; a)=(n+1) dm, n, (3.26)

with xj given by (3.15).

It is worth noting that the orthogonality relation (3.26) is equivalent to

p4

k2K4
C
.

j=1

sin(`xj g(t)) sin(`xj g(s))

xj

j3

1−q2j

=
`st(1−2at+t2)(1−2as+s2)

(1−st)2
,

with 0 < st < 1, xj as in (3.15).
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Carlitz [5] also considered the same polynomials and he found their
measure. He did not, however, prove the determinacy of the moment
problem.

4. THE INDETERMINATE CASE

In this section we shall always assume

a=cos f ¥ (−1 , 1), f ¥ (0, p), (4.1)

so that

e ±if=a±`a2−1 .

Next we determine the large n behavior of vn(x; a).

Theorem 4.4.1. Let a ¥ (−1, 1). Then

vn(x; a)==
1

2p n sin f
5e−i(n+1) f+ip/4 sin(`x g(e if))

`x

+e i(n+1) f−ip/4
sin(`x g(e−if))

`x
6 [1+o(1)] (4.2)

holds as nQ., for fixed x. It also holds uniformly in x, for x in compact
subsets of the complex plane.

Proof. The t singularities of the generating function (2.18) are t=e ±if.
Thus Darboux’s method [17], gives

vn(x; a)=(1−e2if)−1/2
(1/2)n
n!

e−i(n+1/2) f
sin(`x g(e if))

`x
[1+o(1)]

+(1−e−2if)−1/2
(1/2)n
n!

e i(n+1/2) f
sin(`x g(e−if))

`x
[1+o(1)],

which simplifies to (4.2). L

Note that

F
eif

0
u1/2(1−2au+u2)−1/2 du=F

eif

0
u1/2(1−ue if)−1/2 (1−ue−if)−1/2 du

=e3if/2 F
1

0
u1/2(1−ue2if)−1/2 (1−u)−1/2 du.
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Thus

F
e ±if

0
u1/2(1−2au+u2)−1/2 du=

p

2
e ±3if/2 2F1(1/2, 3/2; 2; e ±2if), (4.3)

where we used analytic continuation and Euler’s integral representation
[8, (2.1.3), p. 59].
For convenience, we will use the simplified notations

K=K(cos2 f/2), KŒ=K(sin2 f/2), (4.4)

and

F
eif

0

u1/2

`1−2au+u2
du :=C(f)+iS(f). (4.5)

Then from (4.3), we have

C(f)=
p

2
C
.

n=0

(1/2)n (3/2)n
n! (n+1)!

cos 12n+3
2
2 f,

S(f)=
p

2
C
.

n=0

(1/2)n (3/2)n
n! (n+1)!

sin 12n+3
2
2 f,

and the conjugate of the integral (4.5) is

F
e −if

0

u1/2

`1−2au+u2
du=C(f)− iS(f).

The work [12] contains the relation

g(e ±if)=1
2 (K±iKŒ). (4.6)

Theorem 4.4.2. The Hamburger moment problem associated with the
vn(x; a) is indeterminate for a ¥ (−1, 1).

Proof. In view of (3.10) there is no loss of generality in assuming
a ¥ [0, 1).
From Theorem 2.9 in [15] we know that the Hamburger moment

problem is indeterminate if and only if ;.

n=0 |v̂n(x; a)|
2 converges for all

complex x. Now (4.2) shows that if 0 [ a < 1 then

|v̂n(x; a)|2=
|vn(x; a)|2

n+1
=O(n−3/2);

hence ;.

n=0 |v̂n(x; a)|
2 converges for every complex x and the indeterminacy

follows. L
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We shall mostly follow the notation and terminology in Shohat and
Tamarkin [15]. The polynomials {Qn(z)} and {Qg

n (z)} are the solutions of
the second order difference equation

wn+1(z)=(z−an) wn(z)−bnwn−1(z), n > 0,

which satisfy the initial data

Q0(z) :=1, Q1(z)=z−a0, Qg
0 (z) :=0, Qg

1 (z)=1.

Where an is real and bn > 0, for n > 0. Shohat and Tamarkin [15] used Pn
instead of Qg

n . The polynomials {Qn(x)}
.

n=0 satisfy the orthogonality
relation

F
.

−.
Qn(x) Qm(x) dk(x)=5D

n

i=0
bi6 dnm, b0=F

.

−.
dk(x).

We take b0=1 in [15], so that all measures k are normalized to be prob-
ability measures, that is >R dk=1. For convenience, let hn=b1b2 · · ·bn,
n > 0. The Qn’s are orthogonal with respect to a positive measure with
finite moments of all orders. If the Hamburger moment problem associated
with (4.1) and (4.2) is indeterminate then the polynomials An(z), Bn(z),
Cn(z) and Dn(z),

An+1(z) :=[Qg
n+1(z) Q

g
n (0)−Qg

n+1(0) Q
g
n (z)] h

−1
n ,

(4.7)
Bn+1(z) :=[Qn+1(z) Q

g
n (0)−Qg

n+1(0) Qn(z)] h
−1
n ,

Cn+1(z) :=[Qg
n+1(z) Qn(0)−Qn+1(0) Q

g
n (z)] h

−1
n ,

(4.8)
Dn+1(z) :=[Qn+1(z) Qn(0)−Qn+1(0) Qn(z)] h

−1
n ,

converge uniformly on compact subsets of the complex plane to entire
functions A(z), B(z), C(z), D(z), [15]. Furthermore, the probability mea-
sures k with respect to which the Qn’s are orthogonal are parameterized by
functions s(z), which are analytic in the open upper and lower half planes,
satisfy s(z)=s(z̄), and map Im z > 0 (Im z < 0) into Im z [ 0 (Im z \ 0),
respectively. The orthogonality measures k(. , s) can be recovered from the
knowledge of A(z), B(z), C(z), D(z) and s(z), through the representation

F
.

−.

dk(t, s)
z−t

=
A(z)−s(z) C(z)
B(z)−s(z) D(z)

, Im z ] 0, (4.9)

and the Perron–Stieltjes inversion formula.
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The zeros of A(z), B(z), C(z) and D(z) are real and simple and the zeros
of B(z) and D(z) interlace, [15]. The orthogonality relation of the Qn’s is

F
.

−.
Qm(x) Qn(x) dk(x, s)=hn dm, n. (4.10)

Our next result evaluates B(x) and D(x).

Theorem 4.4.3. When a ¥ (−1, 1) the functions B(x) and D(x) for the
vn’s Hamburger moment problem are given by

D(x)=
4KŒ
p

sin(`x K/2)

`x
cosh(`x KŒ/2)

−
4K
p

sinh(`x KŒ/2)

`x
cos(`x K/2),

(4.11)

B(x)=−
2S(f)
p

sin(`x K/2)

`x
cosh(`x KŒ/2)

+
2C(f)
p

sinh(`x KŒ/2)

`x
cos(`x K/2).

(4.12)

Proof. From (2.16) and (2.17), it follows that bn=4n(n+1)(2n+1)2,
hence

hn=(n+1)[(2n+1)!]2. (4.13)

Let us define the angles w and h by

sin(`x g(e if))

`x
=: sin(`x g(e if))

`x
: e iw, g(e if)=|g(e if)| e ih. (4.14)

We then apply (4.2), (4.8), and (4.13) to see that for x \ 0 we have

D(x)=− lim
nQ.

4(2n+3)

p sin f`n(n+1)
: sin(`x g(e if))

`x
: |g(e if)|

×[cos((n+2) f−w−p/4) cos((n+1) f−h−p/4)

− cos((n+1) f−w−p/4) cos((n+2) f−h−p/4)]

=−
8
p
: sin(`x g(e if))

`x
: |g(e if)| sin w cos h

+
8
p
: sin(`x g(e if))

`x
: |g(e if)| cos w sin h.
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Since |g(e if)| cos h=K/2, |g(e if)| sin h=KŒ/2 and

: sin(`x g(e if))

`x
: cos w=sin(`x K/2) cosh(`x KŒ/2)

`x
, (4.15)

: sin(`x g(e if))

`x
: sin w=cos(`x K/2) sinh(`x KŒ/2)

`x
. (4.16)

The result now simplifies to the right-hand side of (4.11) for x \ 0 using
(4.6). This establishes (4.11) for x \ 0. Since both sides of (4.11) are entire
functions of x, they must be equal for all x, by the identity theorem for
analytic functions. We now come to (4.12). The relationship (3.9) gives a
generating function for the associated polynomials vg

n (0; a) suitable for the
application of Darboux’s method.
This implies the asymptotic formula

vg
n (0; a)=−Re 5 e

−i(n+1) f+i p4

2`2np sin f
F
eif

0

`u

`1−2au+u2
du[1+o(1)]6 ,

that is

vg
n (0; a)=−

1

2`2np sin f
5C(f) cos 1 (n+1) f−

p

4
2

+S(f) sin 1 (n+1) f−
p

4
26 [1+o(1)]. (4.17)

For x > 0 the relationships (4.2), (4.7), (4.14), and (4.17) lead to

B(x)=−
2S(f)
p
: sin`x g(e if)

`x
: cos w+2C(f)

p
: sin`x g(e if)

`x
:=sin w,

which proves (4.12) for x > 0 upon use of (4.15) and (4.16). Finally, we
invoke the identity theorem and extend (4.12) to the whole complex plane.
Now the proof of Theorem 4.3 is complete. L

We now examine the extremal measures [15] or Nevanlinna extremal
measures in [1]. These are the measures for which

s(z)=s,

where s is in the real number system. The Stieltjes transform of the corre-
sponding measures k(. , s) is then given by (4.9) and it is known from
[1, 15] that k(. , s) is discrete for every s and that the polynomials vn(x; a)
are dense in L2(dk(. , s)).
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The masses are located at xn, determined by

B(xn)−sD(xn)=0,

while the masses are r(xn). Relation (2.23) in [4] gives the r function

1
r(x)

=C
.

n=0
w2n(x)=BŒ(x) D(x)−B(x) DŒ(x), (4.18)

for real x. The next theorem records the simplest Nevanlinna extremal
measures.

Theorem 4.4.4. When a ¥ [0, 1) one has the orthogonality measures

k̃(. , s1)=C
.

n=1

3 (2n−1)3 (KŒ/K)2

sinh((2n−1) pKŒ/K)
d(xn)+

(2n)3 (K/KŒ)2

sinh(2npK/KŒ)
d(yn)
4

(4.19)

with k̃(. , s1)={(S(f) K−C(f) KŒ)(KKŒ)2/p5} k(. , s1), s1=−S(f)/(2KŒ)
and

xn=p2(2n−1)2/K2, yn=−4p2n2/KŒ2, n=1, 2, ..., (4.20)

and

k̃(. , s2)=C
.

n=1

3 (2n)3 (KŒ/K)2

sinh((2n) pKŒ/K)
d(wn)+

(2n−1)3 (K/KŒ)2

sinh((2n−1) pK/KŒ)
d(zn)
4

(4.21)

with k̃(. , s2)={(S(f) K−C(f) KŒ)(KKŒ)2/p5} k(. , s2), s2=−C(f)/(2K)
and

wn=(2n)2 p2/K2, zn=−(2n−1)2 p2/KŒ2, n=1, 2, ... . (4.22)

Proof. From (4.11) and (4.12), we have

B(x)−s(x) D(x)=−
2
p
(S(f)+2KŒs(x))

sin(`x K/2)

`x
cosh(`x KŒ/2)

+
2
p
(C(f)+2Ks(x))

sinh(`x KŒ/2)

`x
cos(`x K/2).

For s(x)=s1=: −S(f)/(2KŒ), the masses of the corresponding measure
are located at

xn=p2(2n−1)2/K2, or yn=−4p2n2/KŒ2, n=1, 2, ... .
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By an easy computation, we get the masses

r(xn)=
p5(2n−1)3

K4(KS(f)−KŒC(f))
1

sinh((2n−1) pKŒ/K)
,

r(yn)=
p5(2n)3

KŒ4(KS(f)−KŒC(f))
1

sinh(2npK/KŒ)
.

Hence we get the measure k(. , s1) as given by (4.19) and (4.20). The rest of
the proof runs as before and the proof is complete. L

We now mention some weight functions for the vn’s. It has been shown
in [3] and [10] that the choice

1
s(z)

=3 t+ic, Im z > 0,
t− ic, Im z < 0,

for real t and c > 0 gives the weight function

w(x; t, c)=
c/p

(D(x)−tB(x))2+c2B2(x)
, (4.23)

x
p2

4
{(D(x)−tB(x))2+c2B2(x)}

={(2KŒ+S(f) t)2+c2S(f)2} sin2(`x K/2) cosh2(`x KŒ/2)

+{(2K+C(f) t)2+c2C(f)2} cos2(`x K/2) sinh2(`x KŒ/2)

−2{(2KŒ+S(f) t)(2K+C(f) t)+c2S(f) C(f)}

× sin(`x K/2) cos(`x K/2) sinh(`x KŒ/2) cosh(`x KŒ/2).

The function w(x; t, c) is a weight function for the Qn’s and is normalized
to have unit total mass.
With the choice

2KKŒ+(KŒC(f)+KS(f)) t
t2+c2

=−
1
2
S(f) C(f),

0 < c [ : KŒC(f)−KS(f)
S(f) C(f)

: ,

the denominator in (4.23) simplifies and we obtain the weight function

w(x; t, c)=
pKKŒ

4(KS(f)−KŒC(f))
cx

D(x; t, c)
,

270 ISMAIL, VALENT, AND YOON



where the function D(x; t, c) is written as

D(x; t, c) =KŒ(2KŒt+S(f)(t2+c2)) sin2(`x K/2) cosh2(`x KŒ/2)

−K(2Kt+C(f)(t2+c2)) cos2(`x K/2) sinh2(`x KŒ/2).

Theorem 4.4.5. Let a ¥ (−1, 1). Then for 0 < st < 1 we have

C
.

n=1

3 (2n−1)3 (KŒ/K)2

sinh((2n−1) pKŒ/K)
sin(`xn g(t)) sin(`xn g(s))

xn

+
(2n)3 (K/KŒ)2

sinh(2npK/KŒ)
sinh(`|yn | g(t)) sinh(`|yn | g(s))

|yn |
4

=
(S(f) K−C(f) KŒ)(KKŒ)2

p5
`st(1−2at+t2)(1−2as+s2)

(1−st)2

(4.24)

with xn=p2(2n−1)2/K2, yn=−4p2n2/KŒ2, n=1, 2, ..., or

C
.

n=1

3 (2n)3 (KŒ/K)2

sinh((2n) pKŒ/K)
sin(`wn g(t)) sin(`wn g(s))

wn

+
(2n−1)3 (K/KŒ)2

sinh((2n−1) pK/KŒ)
sinh(`|zn | g(t)) sinh(`|zn | g(s))

|zn |
4

=
(S(f) K−C(f) KŒ)(KKŒ)2

p5
`st(1−2at+t2)(1−2as+s2)

(1−st)2

(4.25)

with wn=(2n)2 p2/K2, zn=−(2n−1)2 p2/KŒ2, n=1, 2, ... .

Proof. Let the vn(x)’s be orthogonal with respect to a measure dm(x)
normalized to have total mass equal to unity, then from (2.17), (2.9) and
the orthogonality of the vn’s with respect to dm(x), we have

F
.

−.

sin(`x g(t)) sin(`x g(s))

x`st(1−2at+t2)(1−2as+s2)
dm(x)=C

.

n=0
(n+1) sntn,

since ;.

n=0 (n+1) xn=1/(1−x)2 for |x| < 1. Replacing dm(x) by the
measures k(. , s1) in (4.19) and k(. , s2) in (4.21), we have the relations
(4.24) and (4.25). L
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5. THE POLYNOMIALS CN(X;−1/2, 0) AND SN(X;−1/2, 0)

In this present section, let a > 1 and we take the notations

Cn(x; A)=Cn(x;−1/2, 0) and Sn(x; A)=Sn(x;−1/2, 0),

for convenience, then (2.25) and (2.28) are rewritten as

C(x; t) :=C
.

n=0
Cn(x; A) tn=

cos(`x g(t))

`1−At
|t| < a−`a2−1 (5.1)

and

S(x, t) :=C
.

n=0
Sn(x; A) tn=

sin(`x g(t))

`xt`1−At
|t| < a−`a2−1 , (5.2)

respectively. We may consider the polynomials Cn(x; A) and Sn(x; A)
satisfying (2.23) and (2.29), respectively, orthonormal. The generating
function C*(x, t) of the numerator polynomials {Cg

n (x; A)} satisfying
(2.23) with the initial conditions

Cg
0 (x; A)=0 and Cg

1 (x; A)=−1/2

satisfies the differential equation

4t(1−2at+t2)
“
2C*(x, t)
“t2

+[10t2−4(2a+A) t+2]
“C*(x, t)
“t

+(x+2t−A) C*(x, t)=−1, (5.3)

where A+B=2a and AB=1. We set

C*(x, t)=
cos(`x g(t))

`1−At
H(x, t) (5.4)

to reduce the order of the differential Eq. (5.3), since the factor multiplying
H in (5.4) satisfies the homogeneous equation corresponding to (5.3). Then
C*(x, t) satisfies the partial differential equation

“
2H
“t2

+5 3t
2−4at+1

2t(t2−2at+1)
−
`x tan(`x g(t))

`t(t2−2a+1)
6 “H
“t

=−
`1−At sec(`x g(t))

4t(t2−2a+1)
, (5.5)

with g(t) as defined in (1.4). Multiply the above Eq. (5.5) by integrating
factor

`t(t2−2at+1) cos2`x g(t)
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and then integrate over to get

“H
“t

=−
sec2`x g(t)

4`t(t2−2at+1)
F
t

0

`1−Au cos(`x g(u))

`u(u2−2au+1)
du,

and after a second integration and integration by parts, we get

H(x, t)=
1

2`x cos`x g(t)
F
t

0

`1−Au sin(`x (g(u)−g(t)))

`u(1−2au+u2)
du. (5.6)

Hence we have the generating function

C*(x, t)=
1

2`1−At
F
t

0

`1−Au sin(`x (g(u)−g(t)))

`1−2au+u2`xu
du. (5.7)

The t-singularity of the generating function C(x; t) in (5.1) is unique and
t=A−1=B. Using Darboux’s method in the case when A=ef, a=cosh f,
f > 0, we get

Cn(x; A)=(np)−1/2 An cos`x g(B)(1+o(1)). (5.8)

Since the t-singularity of C*(x; t) in (5.7) is also unique and t=A−1=B,
Darboux’s method gives

Cg
n (x; A)=

An

2`np
F
B

0

`1−Au sin(`x (g(u)−g(B)))

`1−2au+u2`xu
du(1+o(1)). (5.9)

Thus we have from (5.6), (5.8), and (5.9)

lim
nQ.

Cg
n (x; e

f)
Cn(x; ef)

=H(x, e−f). (5.10)

Theorem 5.5.1. For a > 1 the continued J-fraction associated with the
Cn(x; ef)’s

−1/2
a0x+b0 −

c1
a1x+b1 −

· · · , (5.11)

with

an :=−
1

2(n+1)(2n+1)
, bn :=

8an2+4efn+ef

2(n+1)(2n+1)
, cn :=

n(2n−1)
(n+1)(2n+1)

,
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converges uniformly to J2(x; ef) defined as

J2(x; ef) :=F
e −f/2

0

sin(`x (g(u2)−g(e−f)))

`x`1−e−fu2 cos`x g(e−f)
du, (5.12)

on compact subsets of the complex plane not containing the zeros of
cos(`x g(e−f)). Where a=cosh f, f > 0.

Proof. The function H(x, e−f) from (5.6) is

H(x, e−f)=
1

2`x cos`x g(e−f)
F
e −f

0

sin(`x (g(u)−g(e−f)))

`u(1−e−fu)
du.

Since Cn(x; ef) and Cg
n (x; e

f) are the numerators and denominators of the
continued fraction in (5.11), it then follows from (5.10) that the continued
fraction (5.11) converges to H(x, e−f), which is the right-hand side of
(5.12). L

For the birth and death processes with rates

ln=k2(2n+1)2, mn=(2n)2, 0 < k2 < 1, (5.13)

Stieltjes [16] studied the orthogonal polynomials and continued fractions
[20, (94.19)].

Theorem 5.5.2. Let a ¥ (1,.) then the Hamburger moment problem
associated with the polynomials {Cn(x; ef)} is determinate where a=cosh f,
f > 0. In particular, the Cn(x; ef)’s are orthogonal with respect to a unique
measure m(x) which is discrete and its Stieltjes transform is given by

F
.

−.

dm(t)
x−t

=
1

`x
F
e −f/2

0

sin(`x (g(u2)−g(e−f)))

`1−e−fu2 cos(`x g(e−f))
du. (5.14)

Proof. On account of (2.23) the polynomials {Cn(x; ef)} are ortho-
normal. Theorem 2.9 in [15] asserts that the divergence of ;.

n=0

|Cn(x; ef)|2 for one complex x is sufficient for the determinacy of the
Hamburger moment problem. Since

Cn(x; ef)=(np)−1/2 enf cos[`x g(e−f)](1+o(1)),

then Cn(x; ef) ¨ a2 for a complex x with cos`x g(e−f) ] 0.
Since the right-hand side of (5.14) is a meromorphic function then m is

discrete and the proof of the theorem is complete. L
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G. Valent [18] showed that Hamburger moment problem of the poly-
nomials defined by the recurrence

(ln+mn−x) Pn(x)=mn+1Pn+1+ln−1Pn−1(x), n \ 0, (5.15)

P−1(x)=0, P0(x)=1, with the rates in (5.13) with 0 < k2 < 1 is determi-
nate. Combining this result with Theorem 5.2 gives the following.

Corollary 5.5.3. Hamburger moment problem of the polynomials
defined by the recurrence

(ln+mn−x) Pn(x)=mn+1Pn+1+ln−1Pn−1(x), n \ 0, (5.16)

P−1(x)=0, P0(x)=1, with the rates

ln=k2(2n+1)2, mn=(2n)2, 0 < k2, k2 ] 1,

is determinate.

Proof. We have only to prove it with k2 > 1. In Theorem 5.2, we
showed that Hamburger moment problem of the polynomials Cn(x; ef)’s is
determinate and this case is when k2=e2f=A/B > 1 in the rates (5.13). L

In case of the polynomials {Sn(x; A)}, the generating function S*(x; t) of
the numerator polynomials {S*(x; A)} satisfying the recurrence relation
(2.30) with the initial conditions

Sg
0 (x; A)=0, and Sg

1 (x; A)=−1/6

is easily obtained as

S*(x; t)=
1

2`1−At
F
t

0

`1−Au sin(`x (g(u)−g(t)))

`xt`1−2au+u2
du.

Apply Darboux’s method to the generating functions S(x; t) and S*(x; t)
with A=ef, we have the asymptotic behavior of polynomials Sn’s and Sg

n ’s

Sn(x; ef)=(np)−1/2 e (n+1/2) f
sin`x g(e−f)

`x
(1+o(1)),

Sg
n (x; e

f)=(np)−1/2 e (n+1/2) f F
e −f

0

×
sin(`x (g(u)−g(e−f)))

2`x`1−e−fu
du (1+o(1)).
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So we have the convergence of the continued fraction associated with
{Sn(x; ef)}

lim
nQ.

Sg
n (x; e

f)
Sn(x; ef)

=F
e −f

0

sin(`x (g(u)−g(e−f)))

2`1−e−fu sin(`x g(e−f))
du.

Now we have the followings similar to Theorem 5.1, Theorem 5.2 and
Corollary 5.3.

Theorem 5.5.4. For a > 1 the Sn(x; ef)’s are orthogonal with respect to a
unique measure m(x) which is discrete and its Stieltjes transform is given by

F
.

−.

dm(t)
x−t

=F
e −f

0

sin(`x (g(u)−g(e−f)))

2`1−e−fu sin(`x g(e−f))
du, (5.17)

where a=cosh f, f > 0. Furthermore the continued J-fraction

−1/6
a0x+b0 −

c1
a1x+b1 −

· · · ,

with

an :=
−1

2(n+1)(2n+3)
,

bn :=
8an2+4(2a+ef) n+2a+3

2(n+1)(2n+3)
,

cn :=
n(2n+1)

(n+1)(2n+3)
,

converges uniformly to the right hand side of (5.18) on compact subsets of the
complex plane not containing the zeros of sin(`x g(e−f)).

G. Valent [18] also proved the determinacy of Hamburger moment
problem of the polynomials defined by (5.16) with rates ln=4k2(n+1)2

and mn=(2n+1)2 for 0 < k2 < 1. Thus we have the following.

Corollary 5.5.5. Hamburger moment problem of the polynomials
defined by the recurrence

(ln+mn−x) Pn(x)=mn+1Pn+1+ln−1Pn−1(x), n \ 0, (5.18)

P−1(x)=0, P0(x)=1, with the rates

ln=4k2(n+1)2, mn=(2n+1)2, 0 < k2, k2 ] 1,

is determinate.
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Note that multiplying both sides of (5.1) by `1−At , differentiating
with respect to the variable t, and then multiplying again by −2`1−At
gives

C
.

n=0

A(2n+1) Cn(A; x)−2(n+1) Cn+1(A; x)
x

tn=
sin`x g(t)

`xt`1−(1/A) t

and the similar argument to the relation (5.2) leads

C
.

n=0
{(2n+1) Sn(A; x)−2nASn−1(A; x)} tn=

cos`x g(t)

`1−1/At
,

Hence we have the relations

(i) A(2n+1) Cn(A; x)−2(n+1) Cn+1(A; x)=xSn(1/A; x);
(ii) (2n+1) Sn(A; x)−2nASn−1(A; x)=Cn(1/A; x);
(iii) Cn+1(A; 0)=

An+1(2n+1)!
22n+1n! (n+1)!

.
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